

City Utilities Design Standards Manual

Exhibit SW5-1	Time of	Concentration	i Worksheet

Version: June 2024

Project	By	Date		
Location	Checked	Date		
Select one:				
NOTES: Space for as many as two segments per flow type can be used for each worksheet.				
Include a map, schematic, or description	or now segments.			
		Segment 1 Segment 2		
$\underline{\text{Overland (Sheet) flow}} \text{ (Applicable as part of } T_c$				
1. Surface description : paved or unpaved				
2. Manning's roughness coeff., n				
3. Flow Length, L (total L \leq 300 for unpaved, L \leq	≤ 100 for paved) ft			
4. Two-yr 24-hr rainfall, P ₂	in			
5. Land slope, s	ft/ft			
6. Calculate $T_t = \frac{0.007 \text{ (nL)}^{0.8}}{P_2^{0.5} c^{0.4}}$	hr	+ =		
rz s				
Shallow concentrated flow	Segment ID			
7. Surface description: paved or unpaved				
8. Flow length, L	ft			
9. Watercourse slope, s	ft/ft			
10. Average velocity, V _{unpaved} =16.1345(s) ^{0.5} , or \	V _{paved} =20.3282(s) ^{0.5} ft/s			
11. Calculate T _t = L 3600 V	hr	+ =		
3000 V				
<u>Channel flow</u>	Segment ID			
12. Cross sectional flow area, a	ft²			
13. Wetted perimeter, $p_{\rm w}$	ft			
14. Calculate Hydraulic radius, $r_H = \frac{a}{p_w}$	ft			
15. Channel slope, s	ft/ft			
16. Manning's roughness coeff., n (Exhibit 205.3.1)				
17. Calculate V= $\frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s			
18. Flow length, L	ft			
19. Calculate T _t = L 3600 V	hr	+ =		
20. Watershed or subarea T_c or T_t (add T_t in ste	ps 6, 11, and 19) hr			